eeeeee

Environment Mapping Steps

= Generate or load a 2D texture that depicts the environment

= For every pixel of the reflected object...
1. Calculate the normal n

2. Calculate a reflection vector r from n and the view vector v
3. Calculate texture coordinates (u,v) from r

4. Color the pixel with the texture value

= The problem: how does one parameterize the space of the reflection
vectors?

= |.e.: how does one map spatial directions onto [0,1]x[0,1]?
= Desired Characteristics:

= Uniform sampling (number of texels per solid angle should be "as constant as
possible" in all directions)

= View-independent — only one texture for all camera positions

= Hardware support (texture coordinates should just be easy to generate)

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Texturing

31

eeeeee

Y Spherical Environment Mapping

= Generating the environment map (= texture):
= Photography of a reflective sphere; or

= Ray tracing of the scene with all primary rays
being reflected at a perfectly reflective sphere

o
- N/
R

174
B} \
- /N
< f\
/

e

2 A

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Texturing 32

eeeeee

= Mapping of the directional vector r
onto (u,v):
= The sphere map contains

(theoretically) a color value for every
direction, except r=(0, O, -1)

= Mapping:
(”) 1 \/r3+r3+x(rz+1)2' 1
v) 2 ry
V6E+rH(+1)? 1

G. Zachmann Advanced Computer Graphics SS May 2013

..

<n
£ 13l

A
y
______________ r J a
B
Y4
A
y
< y4
Advanced Texturing 33

LELELELEES

eeeee

-~

Reflected View Vector
(can be calculated automatically by OpenGL)

-~

View Vector

Texture Plane

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Texturing 34

Y

Simple Example

G. Zachmann Advanced Computer Graphics

SS

May 2013

Advanced Texturing

35

eeeee

. cc =
VR

%21

a=00pi —— A
a= 0.1 pi 1
a=02pi —— 2
a= 0.3 pi A L
a= 0.4 pi 1 ‘
a=0.5pi ——— 2\5"\
a= 0.6 pi

a= 0.7 pi
a=08pi ——
a=09pi ——
a= 1.0 pi

Front Half

y

—Back Half

N/

’

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Texturing 36

eeeee

= Texture coords are interpolated
incorrectly:

= Texture coords are interpolated linearly (by
the rasterizer), but the sphere map is non-

linear Cyan sparkle sneaks into
= Long polygons can cause serious "bends" in : ' silhouette edge.
the texture b Also lots of black sparkles.

Flickers in animations.

= Sometimes, incorrect wrap-arounds occur
with interpolated texture coords

= Sparkles / speckles if the reflecting vector
comes close to the edge of the texture
(through aliasing and "wrap-around")

2D texturing
Intended/ hardware
correct doesn't know
wrap about sphere
through maps, it just
the sphere _ linearly
perimenter interpolates
texture coords
G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Texturing 37

eeeeee

= Other cons:
= Textures are difficult to generate by program

= Viewpoint dependent: the center of the spherical texture map represents the
vector that goes directly back to the viewer!

- Can be made view independent with some OpenGL extensions
= Pros:

= Easy to generate texture coordinates
= Supported in OpenGL

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Texturing

38

LY

Bremen

W A Piece of Artwork

Reflective balls in the main street of Adelaide, Australia

G. Zachmann Advanced Computer Graphics SS May 2013

Advanced Texturing

<N

£ 13l

39

o

Bremen

Y

Dual Parabolic Environment Mapping

= |dea: n

= Map the environment onto two textures
via a reflective double paraboloid

= Pros:

Relatively uniform sampling

View independent

Relatively simple computation of texture
coordinates

Also works in OpenGL

Also works in a single rendering pass (just
needs multi-texturing)

= Cons:

- Produces artifacts when interpolating
across the edge

G. Zachmann Advanced Computer Graphics SS May 2013

Advanced Texturing

v
“

<n
£ 13l

40

o

eeeee

= Images of the environment (= directional vectors) are still discs (as with
the sphere map)

= Comparison:

Back

Result

Parabolic environment map

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Texturing

..

<n
£ 13l

41

o

Bremen

Y

Cubic Environment Mapping

= As before with the "normal" cube

maps
= Only difference: use the reflected

vector r for the calculation of the
texture coordinates

= This reflected vector can be
automatically calculated by
OpenGL for each vertex
(GL_REFLECTION MAP)

G. Zachmann Advanced Computer Graphics SS

May 2013

Advanced Texturing

42

G. Zachmann

Advanced Computer Graphics

Cube Map Demo

SS May 2013

Advanced Texturing

‘. CG =

ALY

VR =

43

eeeeee

<n
£ 13l

Cube Maps as LUT for Directional Functions 7.

= Further application: one can also use a cube map to store any function of
direction! (as a precomputed lookup table)

= Example: normalization of a vector

= Every cube map texel (s,t,r) stores this vector
(s, t,r)

(s, t. N -

= Now one can specify any texture coordinates using

aoe} A"]

in its RGB channels

glTexCoord3f () and receives the normalized vector

= Warning: when using this technique,
one should turn off filtering

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Texturing 44

o

eeeeee

Dynamic Environment Maps B

= Until now: environment map was invalid as soon as something in the
environmental scene had changed!

" |dea:
= Render the scene from the "midpoint" outward (typically 6x for cube map)
= Transfer framebuffer to texture (using the appropriate mapping)

= Render the scene again from the viewpoint outward, this time with
environment mapping

» Multi-pass rendering

= Typically used with cube env maps

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Texturing 45

Bremen

j Dynamic Environment Mapping in OpenGL

Using Cube Maps

...

1.0
-1.0
0.0
.0
0
0

14

14

~ ~

~

o O o

14

I 2

{ 0.0,

14

~ ~

~

O OO O o

0
0
.0
0
0

4

¥

I 2

GLuint cm_size
GLfloat cm dir[6][3];
float dir[6] [3]

0.0, 0.0
0.0, 0.0
0.0, -1.
0.0, 1.0
1.0, 0.0
-1.0, O.

S
=il
=il ¢
=il ¢
0.
0.

0,

14

~

~

~

0
0
0
0
0

14

—al

R OOOo

512;

{

14

GLfloat cm up[6][3]
0.

0
0
0
.0
0
.0

14

~

~

~

’

GLfloat cm center[3];

GLenum cm_ face[6]
GL_TEXTURE CUBE_MAP POSITIVE X,
GL_TEXTURE CUBE MAP NEGATIVE X,
GL_TEXTURE CUBE_MAP NEGATIVE Z,
GL_TEXTURE CUBE MAP POSITIVE Z,
GL_TEXTURE CUBE MAP POSITIVE Y,
GL_TEXTURE CUBE_MAP NEGATIVE_Y

//
//

//
//
//
//
//
//

//
//
//
//
//
//
//

//

texture resolution of each face
direction vectors

right
left
bottom
top
back
front

up vectors
+x
-X
ty
4
+z
-2z

viewpoint / center of gravity

// define cube map's center cm_center[] = center of object
// (in which scene has to be reflected)

™ VIO =TT

% CG &

VR

46

eeeee

=

<N

// set up cube map's view directions in correct order
for (uint 1 =0, i < 6; i +)
for (uint j =0, j < 3; jJ +)
cm dir[i] [j] = cm_center[j] + dir[i][]];

// render the 6 perspective views (first 6 render passes)
for (unsigned int i = 0; 1 < 6; i ++)
{
glClear (GL_COLOR BUFFER BIT | GL DEPTH BUFFER BIT);
glViewport(0, 0, cm size, cm size);
glMatrixMode (GL PROJECTION) ;
glLoadIdentity();
gluPerspective(90.0, 1.0, 0.1, ...);
glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity() ;
gluLookAt(cm center[0], cm center[l], cm center[2],
cm dir[i][0], em dir[i][1], cm dir[i][2],
cm up[i] [0], cm up[il[1], cm_up[il[2]);
// render scene to be reflected

// read-back into corresponding texture map
glCopyTexImage2D(cm face[i], 0, GL RGB, 0, 0, cm size, cm size, 0);

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Texturing

0

47

Bremen

// cube map texture parameters init

glTexEnvf(GL TEXTURE ENV, GL TEXTURE ENV_MODE, GL MODULATE) ;
glTexParameteri (GL _TEXTURE CUBE MAP, GL TEXTURE WRAP S, GL_CLAMP);
glTexParameteri (GL _TEXTURE CUBE MAP, GL TEXTURE WRAP T, GL_CLAMP);
glTexParameterf (GL_TEXTURE CUBE MAP, GL TEXTURE MAG FILTER, GL LINEAR) ;
glTexParameterf (GL TEXTURE CUBE MAP, GL TEXTURE MIN FILTER, GL NEAREST) ;

=

<N

glTexGeni (GL_S, GL_TEXTURE GEN MODE, GL REFLECTION MAP); oo g
glTexGeni(GL T, GL TEXTURE GEN MODE, GL REFLECTION MAP); pepnereen
glTexGeni (GL R, GL TEXTURE GEN MODE, GL REFLECTION MAP); in Eye-Koord.

// enable texture mapping and automatic texture coordinate generation
glEnable(GL _TEXTURE GEN S);

glEnable(GL_TEXTURE GEN T);

glEnable(GL_TEXTURE GEN R);

glEnable (GL_TEXTURE CUBE MAP) ;

// render object in 7th pass (in which scene has to be reflected)

// disable texture mapping and automatic texture coordinate generation
glDisable (GL_TEXTURE CUBE MAP) ;

glDisable(GL _TEXTURE GEN S);

glDisable(GL_TEXTURE GEN T);

glDisable(GL_TEXTURE GEN R);

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Texturing

0

48

eeeeee

For Further Reading

= On the class’s homepage:
= "OpenGL Cube Map Texturing" (Nvidia, 1999)

- With example code

- Here several details are explained (e.g. the orientation)

= "Lighting and Shading Techniques for Interactive Applications" (Tom
McReynolds & David Blythe, Siggraph 1999);

= SIGGRAPH '99 Course: "Advanced Graphics Programming Techniques Using
OpenGL" (ist Teil des 0.g. Dokumentes)

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Texturing 49

Y

Parallax Mapping

= Problem with bump- / normal mapping:

= Only the lighting is affected — the image of the
texture remains unchanged, regardless of the
direction from which one looks

= Motion parallax: near / distant objects shift
very differently relative to one another (or even
in a different direction! depending on the point
of focus)

= Extreme example:

G. Zachmann Advanced Computer Graphics SS May 2013

Advanced Texturing

<N

0

66

eeeee

£ 13l

r
«
LELELELEES

<N

= The basic task in parallax mapping: p
: . : i
= Assume, scan line conversion is at pixel P ™~ y
D/ o
= Determine point P, that would be seen f_:f*
(0]
= Project P onto P’
= Write the corresponding texel as a color
= Problem: how does one find P’ ?
Viewing ray /
Eye vector

Polygonal surface

Displacement Surface /
Offset Surface

p

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Texturing 67

eeeeee

= Simplest idea:
= We know the height h = D(u,v) at point P = P(u,v)
= Use this as an approximation of D(u',v'") in point P' = P'(u,v)

-g:tanﬁz sinf cos¢ |nv|

cosf sing |nxv|

G. Zachmann Advanced Computer Graphics SS May 2013

Advanced Texturing

.

\?’.
<N

68

LELELELEES

eeeee

= Storage:

= The image in the RGB channels of the

texture
= The heightmap in the alpha chann
" Process:

= Compute P' (see previous slide)

el

= Calculate (u',v") of P' — lookup texel

= Perturb normal by bump mapping (see

CG1)

- Note: today one can calculate directional

derivatives for Dy and Dy "on the
fly" (needed in bump mapping algo)

= Evaluate Phong model with texel color

G. Zachmann Advanced Computer Graphics SS

May 2013

Advanced Texturing

69

Bremen

Example b oo

Normal Bump Mapping Parallax Mapping
(For demonstration purposes,

parallax is strongly exaggerated here)

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Texturing 70

eeeeee

= Improvement: [Premecz, 2006]
« Let P = (u, v, h) with h = D(u, v)
= Approximate the heightmap in p through a plane (similar to bump mapping)

= Calculate the point of intersection

n
between that plane and the view vector v
u u (v, v (u,v)
" ! ' |
n v]+tv—|v =0 s

|
I_'_I
|
I

0 h

= Solve 3rd line for t

/
. (5’) - (5) + tv’ , with v' = (v projected into polygon's plane)

= Additional (closely related) ideas: iteration, higher approximation of the

heightmap

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Texturing 71

eeeeee

Alternatives

= Do sphere tracing along the view
vectors, until you hit the offset
surface
= If the heightmap contains heights that
are not too large, it is sufficient to

begin relatively close underneath/
above the plane of reference

= If the angle of the view vector is not
too acute, then a few steps are
sufficient
= For a layer underneath the plane of
reference, save the smallest distance
to the offset surface for every cell

G. Zachmann Advanced Computer Graphics SS May 2013

[Donnelly, 2005]

Advanced Texturing

72

eeeeee

: f &
\3) View-Dependent Displacement Mapping (VDM) [2003] @ Fee

= |dea: precompute all possible texture ln//v
coordinate displacements for all possible 5#» 0
situations \/\
= In practice:
= Parameterize the viewing vector by (6, ¢) in the o 0> ;
3

local coordinate system of the polygon

= Precompute the texture displacement for all (u,v)
and a specific (6, ¢)

- Ray casting of an explicit, temporarily generated
mesh

= Carry this out for all possible (6, ¢)

= Carry out the whole for a set of possible

curvatures c of the base surface O\/O/O/\

= Results in a 5-dim. "Texture" (LUT): d(u, v, 0, ¢, c)

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Texturing 73

eeeeee

" Pro: results in a correct silhouette

= Reason: d(u,v,0,o, C) = —1 for many parameters near the silhouette

= These are the pixels that lie outside of the silhouette!

Further enhancement: self shadowing
= |dea like that in ray tracing: use "shadow rays"
1. Determine P from d and 9 ,¢ (just like before)

2. Determine vektor I from P to the light source; and calc 67, ¢; from that

3. Determine P = (u”, v"") from Pand 6;and ¢y
4. Make lookup in our "texture" d (u”, v") (v, v)

5. Test:
d(u”",v", 0, ¢, ¢)<d(uv,0,¢,c)
— pixel (u,v) is in shadow
— don't add light source I in Phong model

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Texturing 74

eeeee

G. Zachmann Advanced Computer Graphics SS May 2013

d

o

<n
0

= Result:

Bump Mapping Displacement Mapping

= Names:

= Steep parallax mapping, parallax occlusion mapping, horizon mapping, view-
dependent displacement mapping, ...

= There are still many other variants ...

= "Name ist Schall und Rauch!" ("A name is but noise and smoke!")

Advanced Texturing 75

Bremen

Wy More Results

Bump mapping Simple Displacement View-dependent displacement
Mapping mapping with self-shadowing
(not covered here)

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Texturing 76

Bremen

Y

All Examples Were Rendered with VDM

G. Zachmann Advanced Computer Graphics SS May 2013

Advanced Texturing

<N

£ 13l

77

LELELELEES

