
G. Zachmann 31 Advanced Texturing Advanced Computer Graphics 29 May 2013 SS

Environment Mapping Steps

§  Generate or load a 2D texture that depicts the environment
§  For every pixel of the reflected object…

1. Calculate the normal n

2. Calculate a reflection vector r from n and the view vector v
3. Calculate texture coordinates (u,v) from r

4. Color the pixel with the texture value

§  The problem: how does one parameterize the space of the reflection
vectors?
§  I.e.: how does one map spatial directions onto [0,1]x[0,1]?

§  Desired Characteristics:
§  Uniform sampling (number of texels per solid angle should be "as constant as

possible" in all directions)
§  View-independent ⟶ only one texture for all camera positions

§  Hardware support (texture coordinates should just be easy to generate)

G. Zachmann 32 Advanced Texturing Advanced Computer Graphics 29 May 2013 SS

Spherical Environment Mapping

§  Generating the environment map (= texture):

§  Photography of a reflective sphere; or

§  Ray tracing of the scene with all primary rays
being reflected at a perfectly reflective sphere

G. Zachmann 33 Advanced Texturing Advanced Computer Graphics 29 May 2013 SS

§  Mapping of the directional vector r
onto (u,v):

§  The sphere map contains
(theoretically) a color value for every
direction, except r = (0, 0, -1)

§ Mapping:

y

z

v

r r

y

z
r

�
u
v

⇥
=

1

2

⇤

⌥⇧

rx�
r2
x +r2

y +(rz+1)2
+ 1

ry�
r2
x +r2

y +(rz+1)2
+ 1

⌅

�⌃

G. Zachmann 34 Advanced Texturing Advanced Computer Graphics 29 May 2013 SS

§  Application of the sphere mapping to texturing:

Texture Plane

Reflected View Vector
(can be calculated automatically by OpenGL)

View Vector

G. Zachmann 35 Advanced Texturing Advanced Computer Graphics 29 May 2013 SS

Simple Example

G. Zachmann 36 Advanced Texturing Advanced Computer Graphics 29 May 2013 SS

§  Unfortunately, the mapping/sampling is not very uniform:

y

z
r

a

G. Zachmann 37 Advanced Texturing Advanced Computer Graphics 29 May 2013 SS

§  Texture coords are interpolated
incorrectly:
§  Texture coords are interpolated linearly (by

the rasterizer), but the sphere map is non-
linear

§  Long polygons can cause serious "bends" in
the texture

§  Sometimes, incorrect wrap-arounds occur
with interpolated texture coords

§  Sparkles / speckles if the reflecting vector
comes close to the edge of the texture
(through aliasing and "wrap-around")

Intended/
correct

wrap
through

the sphere
perimenter

2D texturing
hardware

doesn't know
about sphere
maps, it just

linearly
interpolates

texture coords

G. Zachmann 38 Advanced Texturing Advanced Computer Graphics 29 May 2013 SS

§  Other cons:
§  Textures are difficult to generate by program
§  Viewpoint dependent: the center of the spherical texture map represents the

vector that goes directly back to the viewer!
-  Can be made view independent with some OpenGL extensions

§  Pros:
§  Easy to generate texture coordinates
§  Supported in OpenGL

G. Zachmann 39 Advanced Texturing Advanced Computer Graphics 29 May 2013 SS

A Piece of Artwork

Reflective balls in the main street of Adelaide, Australia

G. Zachmann 40 Advanced Texturing Advanced Computer Graphics 29 May 2013 SS

Dual Parabolic Environment Mapping

§  Idea:

§ Map the environment onto two textures
via a reflective double paraboloid

§  Pros:

-  Relatively uniform sampling

-  View independent

-  Relatively simple computation of texture
coordinates

-  Also works in OpenGL

-  Also works in a single rendering pass (just
needs multi-texturing)

§  Cons:

-  Produces artifacts when interpolating
across the edge

G. Zachmann 41 Advanced Texturing Advanced Computer Graphics 29 May 2013 SS

§  Images of the environment (= directional vectors) are still discs (as with
the sphere map)

§  Comparison:

Parabolic environment map

Result

G. Zachmann 42 Advanced Texturing Advanced Computer Graphics 29 May 2013 SS

Cubic Environment Mapping

§  As before with the "normal" cube
maps

§  Only difference: use the reflected
vector r for the calculation of the
texture coordinates

§  This reflected vector can be
automatically calculated by
OpenGL for each vertex
(GL_REFLECTION_MAP)

G. Zachmann 43 Advanced Texturing Advanced Computer Graphics 29 May 2013 SS

Demo with Static Environment

G. Zachmann 44 Advanced Texturing Advanced Computer Graphics 29 May 2013 SS

Cube Maps as LUT for Directional Functions

§  Further application: one can also use a cube map to store any function of
direction! (as a precomputed lookup table)

§  Example: normalization of a vector

§  Every cube map texel (s,t,r) stores this vector

in its RGB channels

§  Now one can specify any texture coordinates using
glTexCoord3f()and receives the normalized vector

§  Warning: when using this technique,
one should turn off filtering

(s, t, r)

�(s, t, r)�

G. Zachmann 45 Advanced Texturing Advanced Computer Graphics 29 May 2013 SS

Dynamic Environment Maps

§  Until now: environment map was invalid as soon as something in the
environmental scene had changed!

§  Idea:

§  Render the scene from the "midpoint" outward (typically 6x for cube map)

§  Transfer framebuffer to texture (using the appropriate mapping)

§  Render the scene again from the viewpoint outward, this time with
environment mapping

Ø Multi-pass rendering

§  Typically used with cube env maps

G. Zachmann 46 Advanced Texturing Advanced Computer Graphics 29 May 2013 SS

Dynamic Environment Mapping in OpenGL
Using Cube Maps

GLuint cm_size = 512; // texture resolution of each face
GLfloat cm_dir[6][3]; // direction vectors
float dir[6][3] = {
 1.0, 0.0, 0.0, // right
 -1.0, 0.0, 0.0, // left
 0.0, 0.0, -1.0, // bottom
 0.0, 0.0, 1.0, // top
 0.0, 1.0, 0.0, // back
 0.0, -1.0, 0.0 // front
};
GLfloat cm_up[6][3] = // up vectors
{ 0.0, -1.0, 0.0, // +x
 0.0, -1.0, 0.0, // -x
 0.0, -1.0, 0.0, // +y
 0.0, -1.0, 0.0, // -y
 0.0, 0.0, 1.0, // +z
 0.0, 0.0, -1.0 // -z
};
GLfloat cm_center[3]; // viewpoint / center of gravity
GLenum cm_face[6] = {
 GL_TEXTURE_CUBE_MAP_POSITIVE_X,
 GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
 GL_TEXTURE_CUBE_MAP_NEGATIVE_Z,
 GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
 GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
 GL_TEXTURE_CUBE_MAP_NEGATIVE_Y
};
// define cube map's center cm_center[] = center of object
// (in which scene has to be reflected)
...	

G. Zachmann 47 Advanced Texturing Advanced Computer Graphics 29 May 2013 SS

// set up cube map's view directions in correct order
for (uint i = 0, i < 6; i +)
 for (uint j = 0, j < 3; j +)
 cm_dir[i][j] = cm_center[j] + dir[i][j];

// render the 6 perspective views (first 6 render passes)
for (unsigned int i = 0; i < 6; i ++)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glViewport(0, 0, cm_size, cm_size);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(90.0, 1.0, 0.1, ...);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 gluLookAt(cm_center[0], cm_center[1], cm_center[2],

 cm_dir[i][0], cm_dir[i][1], cm_dir[i][2],
 cm_up[i][0], cm_up[i][1], cm_up[i][2]);
 // render scene to be reflected
 ...
 // read-back into corresponding texture map
 glCopyTexImage2D(cm_face[i], 0, GL_RGB, 0, 0, cm_size, cm_size, 0);

}

G. Zachmann 48 Advanced Texturing Advanced Computer Graphics 29 May 2013 SS

// cube map texture parameters init
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP);
glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP);
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP);
glTexGeni(GL_R, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP);

// enable texture mapping and automatic texture coordinate generation
glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
glEnable(GL_TEXTURE_GEN_R);
glEnable(GL_TEXTURE_CUBE_MAP);

// render object in 7th pass (in which scene has to be reflected)
...

// disable texture mapping and automatic texture coordinate generation
glDisable(GL_TEXTURE_CUBE_MAP);
glDisable(GL_TEXTURE_GEN_S);
glDisable(GL_TEXTURE_GEN_T);
glDisable(GL_TEXTURE_GEN_R);

Berechnet den
Reflection Vector
in Eye-Koord.

G. Zachmann 49 Advanced Texturing Advanced Computer Graphics 29 May 2013 SS

For Further Reading

§  On the class’s homepage:

§  "OpenGL Cube Map Texturing" (Nvidia, 1999)

-  With example code

-  Here several details are explained (e.g. the orientation)

§  "Lighting and Shading Techniques for Interactive Applications" (Tom
McReynolds & David Blythe, Siggraph 1999);

§  SIGGRAPH '99 Course: "Advanced Graphics Programming Techniques Using
OpenGL" (ist Teil des o.g. Dokumentes)

G. Zachmann 66 Advanced Texturing Advanced Computer Graphics 29 May 2013 SS

Parallax Mapping

§  Problem with bump- / normal mapping:

§ Only the lighting is affected – the image of the
texture remains unchanged, regardless of the
direction from which one looks

§ Motion parallax: near / distant objects shift
very differently relative to one another (or even
in a different direction! depending on the point
of focus)

§  Extreme example:

G. Zachmann 67 Advanced Texturing Advanced Computer Graphics 29 May 2013 SS

§  The basic task in parallax mapping:

§  Assume, scan line conversion is at pixel P

§  Determine point , that would be seen

§  Project onto

§ Write the corresponding texel as a color

§  Problem: how does one find P' ?
Viewing ray /
Eye vector

Polygonal surface

Displacement Surface /
Offset Surface

P = (u, v)P � = (u�, v �)

P̂

P

P �

P̂

P̂ P �

Texture

G. Zachmann 68 Advanced Texturing Advanced Computer Graphics 29 May 2013 SS

§  Simplest idea:

§ We know the height h = D (u,v) at point P = P(u,v)

§  Use this as an approximation of D (u',v') in point P' = P'(u,v)

§ 

P̂

P

h

d P � �

n
-v

�

h

d
= tan ✓ =

sin ✓

cos ✓
=

cos�

sin�
=

|nv|
|n⇥ v|

G. Zachmann 69 Advanced Texturing Advanced Computer Graphics 29 May 2013 SS

§  Storage:

§  The image in the RGB channels of the
texture

§  The heightmap in the alpha channel

§  Process:

§  Compute P' (see previous slide)

§  Calculate (u',v') of P' ⟶ lookup texel

§  Perturb normal by bump mapping (see
CG1)

-  Note: today one can calculate directional

derivatives for Du and Dv "on the
fly" (needed in bump mapping algo)

§  Evaluate Phong model with texel color

RGB

Alpha

G. Zachmann 70 Advanced Texturing Advanced Computer Graphics 29 May 2013 SS

Example

Normal Bump Mapping Parallax Mapping
(For demonstration purposes,

parallax is strongly exaggerated here)

G. Zachmann 71 Advanced Texturing Advanced Computer Graphics 29 May 2013 SS

§  Improvement: [Premecz, 2006]

§  Let with

§  Approximate the heightmap in through a plane (similar to bump mapping)

§  Calculate the point of intersection
between that plane and the view vector

§  Solve 3rd line for t

§  , with v' = (v projected into polygon's plane)

§  Additional (closely related) ideas: iteration, higher approximation of the
heightmap

P̂

n
v

n̂

(u, v)(u�, v �)

h = D(u, v)P̂ = (u, v , h)

Thesis …

P̂ = (u, v , h)

n̂

0

@

0

@
u
v
0

1

A+ tv �

0

@
u
v
h

1

A

1

A = 0
polygon

✓
u0

v 0

◆
=

✓
u
v

◆
+ tv0

G. Zachmann 72 Advanced Texturing Advanced Computer Graphics 29 May 2013 SS

Alternatives [Donnelly, 2005]

§  Do sphere tracing along the view
vectors, until you hit the offset
surface

§  If the heightmap contains heights that
are not too large, it is sufficient to
begin relatively close underneath/
above the plane of reference

§  If the angle of the view vector is not
too acute, then a few steps are
sufficient

§  For a layer underneath the plane of
reference, save the smallest distance
to the offset surface for every cell

G. Zachmann 73 Advanced Texturing Advanced Computer Graphics 29 May 2013 SS

View-Dependent Displacement Mapping (VDM) [2003]

§  Idea: precompute all possible texture
coordinate displacements for all possible
situations

§  In practice:
§  Parameterize the viewing vector by in the

local coordinate system of the polygon

§  Precompute the texture displacement for all (u,v)
and a specific
-  Ray casting of an explicit, temporarily generated

mesh

§  Carry this out for all possible

§  Carry out the whole for a set of possible
curvatures c of the base surface

§  Results in a 5-dim. "Texture" (LUT):

n
v

d �

�1 �2
�3

�4

d(u, v , �,⇥, c)

(✓,�)

(✓,�)

(✓,�)

G. Zachmann 74 Advanced Texturing Advanced Computer Graphics 29 May 2013 SS

§  Pro: results in a correct silhouette

§  Reason: for many parameters near the silhouette

§  These are the pixels that lie outside of the silhouette!

§  Further enhancement: self shadowing

§  Idea like that in ray tracing: use "shadow rays"

1. Determine from d and θ,ϕ (just like before)

2. Determine vektor l from to the light source; and calc θl , ϕl from that

3. Determine from and θl and ϕl

4. Make lookup in our "texture" d

5. Test:

→ pixel (u,v) is in shadow
⟶ don't add light source l in Phong model

d(u, v , �,⇥, c) = �1

P̂

v
d

l
�l

P̂

(u��, v ��) (u, v)

d''

P �� = (u��, v ��)

d(u��, v ��, �l ,⇥l , c) < d(u, v , �,⇥, c)

P̂

P̂

G. Zachmann 75 Advanced Texturing Advanced Computer Graphics 29 May 2013 SS

§  Result:

§  Names:

§  Steep parallax mapping, parallax occlusion mapping, horizon mapping, view-
dependent displacement mapping, ...

§  There are still many other variants ...

§  "Name ist Schall und Rauch!" ("A name is but noise and smoke!")

Bump Mapping Displacement Mapping

G. Zachmann 76 Advanced Texturing Advanced Computer Graphics 29 May 2013 SS

More Results

§  EiMapping

Bump mapping Simple Displacement
Mapping

(not covered here)

View-dependent displacement
mapping with self-shadowing

G. Zachmann 77 Advanced Texturing Advanced Computer Graphics 29 May 2013 SS

All Examples Were Rendered with VDM

