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Environment Mapping Steps 

§  Generate or load a 2D texture that depicts the environment 
§  For every pixel of the reflected object… 

1. Calculate the normal n 

2. Calculate a reflection vector r from n and the view vector v 
3. Calculate texture coordinates (u,v) from r 

4. Color the pixel with the texture value 

§  The problem: how does one parameterize the space of the reflection 
vectors?  
§  I.e.: how does one map spatial directions onto [0,1]x[0,1]? 

§  Desired Characteristics: 
§  Uniform sampling (number of texels per solid angle should be "as constant as 

possible" in all directions) 
§  View-independent ⟶ only one texture for all camera positions 

§  Hardware support (texture coordinates should just be easy to generate) 
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Spherical Environment Mapping 

§  Generating the environment map (= texture): 

§  Photography of a reflective sphere; or 

§  Ray tracing of the scene with all primary rays 
being reflected at a perfectly reflective sphere 
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§  Mapping of the directional vector r 
onto (u,v): 

§  The sphere map contains 
(theoretically) a color value for every 
direction, except  r = (0, 0, -1) 

§ Mapping: 
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§  Application of the sphere mapping to texturing: 

Texture Plane 

Reflected View Vector  
(can be calculated automatically by OpenGL) 

View Vector 
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Simple Example 
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§  Unfortunately, the mapping/sampling is not very uniform: 
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§  Texture coords are interpolated 
incorrectly: 
§  Texture coords are interpolated linearly (by 

the rasterizer), but the sphere map is non-
linear 

§  Long polygons can cause serious "bends" in 
the texture 

§  Sometimes, incorrect wrap-arounds occur 
with interpolated texture coords  

§  Sparkles / speckles if the reflecting vector 
comes close to the edge of the texture 
(through aliasing and "wrap-around") 

Intended/
correct 

wrap 
through 

the sphere 
perimenter 

2D texturing 
hardware 

doesn't know 
about sphere 
maps, it just 

linearly 
interpolates 

texture coords 
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§  Other cons: 
§  Textures are difficult to generate by program 
§  Viewpoint dependent: the center of the spherical texture map represents the 

vector that goes directly back to the viewer!  
-  Can be made view independent with some OpenGL extensions 

§  Pros: 
§  Easy to generate texture coordinates 
§  Supported in OpenGL 
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A Piece of Artwork 

Reflective balls in the main street of Adelaide, Australia 
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Dual Parabolic Environment Mapping 

§  Idea: 

§ Map the environment onto two textures 
via a reflective double paraboloid  

§  Pros: 

-  Relatively uniform sampling 

-  View independent 

-  Relatively simple computation of texture 
coordinates 

-  Also works in OpenGL  

-  Also works in a single rendering pass (just 
needs multi-texturing) 

§  Cons: 

-  Produces artifacts when interpolating  
across the edge 
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§  Images of the environment (= directional vectors) are still discs (as with 
the sphere map) 

§  Comparison: 

Parabolic environment map 

Result 
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Cubic Environment Mapping 

§  As before with the "normal" cube 
maps 

§  Only difference: use the reflected 
vector r for the calculation of the 
texture coordinates  

§  This reflected vector can be 
automatically calculated by 
OpenGL for each vertex 
(GL_REFLECTION_MAP) 
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Demo with Static Environment 
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Cube Maps as LUT for Directional Functions 

§  Further application: one can also use a cube map to store any function of 
direction! (as a precomputed lookup table) 

§  Example: normalization of a vector 

§  Every cube map texel (s,t,r) stores this vector  

 
 
in its RGB channels 

§  Now one can specify any texture coordinates using 
glTexCoord3f()and receives the normalized vector 

§  Warning: when using this technique,  
one should turn off filtering 

(s, t, r)

�(s, t, r)�
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Dynamic Environment Maps 

§  Until now: environment map was invalid as soon as something in the 
environmental scene had changed! 

§  Idea: 

§  Render the scene from the "midpoint" outward (typically 6x for cube map) 

§  Transfer framebuffer to texture (using the appropriate mapping) 

§  Render the scene again from the viewpoint outward, this time with 
environment mapping 

Ø Multi-pass rendering 

§  Typically used with cube env maps  
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Dynamic Environment Mapping in OpenGL  
Using Cube Maps 

GLuint cm_size = 512;   // texture resolution of each face 
GLfloat cm_dir[6][3];   // direction vectors 
float dir[6][3] = {  
    1.0, 0.0, 0.0,      // right 
   -1.0, 0.0, 0.0,      // left  
    0.0, 0.0, -1.0,     // bottom  
    0.0, 0.0, 1.0,      // top  
    0.0, 1.0, 0.0,      // back  
    0.0, -1.0, 0.0      // front 
}; 
GLfloat cm_up[6][3] =   // up vectors 
{   0.0, -1.0,  0.0,    // +x 
    0.0, -1.0,  0.0,    // -x 
    0.0, -1.0,  0.0,    // +y 
    0.0, -1.0,  0.0,    // -y 
    0.0,  0.0,  1.0,    // +z 
    0.0,  0.0, -1.0     // -z 
}; 
GLfloat cm_center[3];   // viewpoint / center of gravity 
GLenum cm_face[6] = {  
    GL_TEXTURE_CUBE_MAP_POSITIVE_X, 
    GL_TEXTURE_CUBE_MAP_NEGATIVE_X, 
    GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, 
    GL_TEXTURE_CUBE_MAP_POSITIVE_Z, 
    GL_TEXTURE_CUBE_MAP_POSITIVE_Y, 
    GL_TEXTURE_CUBE_MAP_NEGATIVE_Y 
}; 
// define cube map's center cm_center[] = center of object 
// (in which scene has to be reflected) 
...	
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// set up cube map's view directions in correct order 
for ( uint i = 0, i < 6; i + ) 
 for ( uint j = 0, j < 3; j + ) 
  cm_dir[i][j] = cm_center[j] + dir[i][j]; 

 
// render the 6 perspective views (first 6 render passes) 
for ( unsigned int i = 0; i < 6; i ++ ) 
{ 
 glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT ); 
 glViewport( 0, 0, cm_size,  cm_size ); 
 glMatrixMode( GL_PROJECTION ); 
 glLoadIdentity(); 
 gluPerspective( 90.0, 1.0, 0.1, ... ); 
 glMatrixMode( GL_MODELVIEW ); 
 glLoadIdentity(); 
 gluLookAt( cm_center[0], cm_center[1], cm_center[2], 

             cm_dir[i][0], cm_dir[i][1], cm_dir[i][2], 
             cm_up[i][0],  cm_up[i][1],  cm_up[i][2] ); 
 // render scene to be reflected 
 ... 
 // read-back into corresponding texture map 
 glCopyTexImage2D( cm_face[i], 0, GL_RGB, 0, 0, cm_size, cm_size, 0 ); 

} 



G. Zachmann 48 Advanced Texturing Advanced Computer Graphics 29 May 2013 SS 

// cube map texture parameters init 
glTexEnvf(  GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE ); 
glTexParameteri( GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP ); 
glTexParameteri( GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP ); 
glTexParameterf( GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR ); 
glTexParameterf( GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_NEAREST); 
glTexGeni( GL_S, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP ); 
glTexGeni( GL_T, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP ); 
glTexGeni( GL_R, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP ); 
 
// enable texture mapping and automatic texture coordinate generation 
glEnable( GL_TEXTURE_GEN_S ); 
glEnable( GL_TEXTURE_GEN_T ); 
glEnable( GL_TEXTURE_GEN_R ); 
glEnable( GL_TEXTURE_CUBE_MAP ); 
 
// render object in 7th pass ( in which scene has to be reflected ) 
... 
 
// disable texture mapping and automatic texture coordinate generation 
glDisable( GL_TEXTURE_CUBE_MAP ); 
glDisable( GL_TEXTURE_GEN_S ); 
glDisable( GL_TEXTURE_GEN_T ); 
glDisable( GL_TEXTURE_GEN_R ); 
 

Berechnet den 
Reflection Vector 
in Eye-Koord. 
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For Further Reading 

§  On the class’s homepage: 

§  "OpenGL Cube Map Texturing" (Nvidia, 1999) 

-  With example code 

-  Here several details are explained (e.g. the orientation) 

§  "Lighting and Shading Techniques for Interactive Applications" (Tom 
McReynolds & David Blythe, Siggraph 1999);  

§  SIGGRAPH '99 Course: "Advanced Graphics Programming Techniques Using 
OpenGL" (ist Teil des o.g. Dokumentes) 



G. Zachmann 66 Advanced Texturing Advanced Computer Graphics 29 May 2013 SS 

Parallax Mapping 

§  Problem with bump- / normal mapping: 

§ Only the lighting is affected – the image of the 
texture remains unchanged, regardless of the 
direction from which one looks  

§ Motion parallax: near / distant objects shift 
very differently relative to one another (or even 
in a different direction! depending on the point 
of focus) 

§  Extreme example: 



G. Zachmann 67 Advanced Texturing Advanced Computer Graphics 29 May 2013 SS 

§  The basic task in parallax mapping: 

§  Assume, scan line conversion is at pixel P 

§  Determine point    , that would be seen 

§  Project     onto 

§ Write the corresponding texel as a color  

§  Problem: how does one find P' ? 
Viewing ray / 
Eye vector 

Polygonal surface 

Displacement Surface / 
Offset Surface 

P = (u, v)P � = (u�, v �)

P̂

P

P �

P̂

P̂ P �

Texture 



G. Zachmann 68 Advanced Texturing Advanced Computer Graphics 29 May 2013 SS 

§  Simplest idea:  

§ We know the height h = D (u,v ) at point P = P(u,v) 

§  Use this as an approximation of D (u',v' ) in point P' = P'(u,v) 

§                                                                    

P̂

P

h 

d P � �

n 
-v 

�

h

d
= tan ✓ =

sin ✓

cos ✓
=
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=

|nv|
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§  Storage: 

§  The image in the RGB channels of the 
texture 

§  The heightmap in the alpha channel 

§  Process: 

§  Compute P' (see previous slide) 

§  Calculate (u',v') of P' ⟶ lookup texel 

§  Perturb normal by bump mapping (see 
CG1) 

-  Note: today one can calculate directional 

derivatives for Du and Dv  "on the 
fly" (needed in bump mapping algo) 

§  Evaluate Phong model with texel color 

RGB 

Alpha 
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Example 

Normal Bump Mapping Parallax Mapping 
(For demonstration purposes,  

parallax is strongly exaggerated here) 
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§  Improvement:            [Premecz, 2006] 

§  Let                           with  

§  Approximate the heightmap in     through a plane (similar to bump mapping) 

§  Calculate the point of intersection  
between that plane and the view vector 

§  Solve 3rd line for t 

§                                       , with v' = (v projected into polygon's plane) 

§  Additional (closely related) ideas: iteration, higher approximation of the 
heightmap 
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Alternatives                                        [Donnelly, 2005] 

§  Do sphere tracing along the view 
vectors, until you hit the offset 
surface 

§  If the heightmap contains heights that 
are not too large, it is sufficient to 
begin relatively close underneath/
above the plane of reference  

§  If the angle of the view vector is not 
too acute, then a few steps are 
sufficient  

§  For a layer underneath the plane of 
reference, save the smallest distance 
to the offset surface for every cell 
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View-Dependent Displacement Mapping (VDM)                      [2003] 

§  Idea: precompute all possible texture 
coordinate displacements for all possible 
situations  

§  In practice: 
§  Parameterize the viewing vector by            in the 

local coordinate system of the polygon 

§  Precompute the texture displacement for all (u,v) 
and a specific           
-  Ray casting of an explicit, temporarily generated 

mesh  

§  Carry this out for all possible              

§  Carry out the whole for a set of possible 
curvatures c of the base surface   

§  Results in a 5-dim. "Texture" (LUT):  
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§  Pro: results in a correct silhouette 

§  Reason:                                           for many parameters near the silhouette 

§  These are the pixels that lie outside of the silhouette! 

§  Further enhancement: self shadowing  

§  Idea like that in ray tracing: use "shadow rays" 

1. Determine     from d and θ,ϕ  (just like before) 

2. Determine vektor l from     to the light source; and calc θl , ϕl  from that  

3. Determine                          from     and θl and ϕl  

4. Make lookup in our "texture" d 

5. Test:  
 
→ pixel (u,v) is in shadow 
⟶ don't add light source l in Phong model  

d( u, v , �,⇥, c ) = �1
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§  Result: 

§  Names: 

§  Steep parallax mapping, parallax occlusion mapping, horizon mapping, view-
dependent displacement mapping, ... 

§  There are still many other variants ... 

§  "Name ist Schall und Rauch!" ("A name is but noise and smoke!") 

Bump Mapping Displacement Mapping 
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More Results 

§  EiMapping 

Bump mapping Simple Displacement  
Mapping 

(not covered here) 

View-dependent displacement 
mapping with self-shadowing 
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All Examples Were Rendered with VDM  


